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Abstract We show that in frustrated spin4 lsing antiferromagnets the entropy on stabilize a 
partially-ordered ground state. In the model on the decorated square lattice partial long-range 
order exists for S 2 1. For the model an the union jack lattice the partially-ordered ground state 
exists even for S = 1 f2 .  For this lattice the ground-state problem is shown to be equivalent in 
a celwin case to the staggered six-vertex model. We suggest that the model on the triangular 
InItiCe for S > Sc - 3 might exhibit a novel kind of partial ordering, 

1. Introduction 

The emergence of order is a very interesting phenomenon. Usually it is the minimization 
of energy which induces order at a sufficiently low temperature; however, in some systems 
the ordering appears through maximization of the entropy. Sometimes this leads to the 
so-called re-entrant phenomenon where a disordered ground state is replaced at a higher 
temperature by an ordered and more strongly degenerate phase [I]. Since entropic effects 
seem negligible at low temperatures, one may think that this mechanism cannot order the 
system at the ground state. However, ‘there is a number of examples where the temperature 
does not seem to play an essential role, but nevertheless the ordering probably has an 
entropic origin. This is the case of the so-called Alder condensation in a system of hard 
disks [2] or its analogue in the system of electrons [3]. Such systems are, however, very 
complicated and their precise description is still lacking. Thus, it would be desirable to 
examine some simpler models which, hopefully, can mimic at least some of the features of 
the abovementioned systems and which are still tractable with satisfactory precision. The 
relatively good understanding that we have of lattice spin models suggests that such simple 
models might be sought among them. 

In this paper we provide some examples of frustrated antiferromagnetic models with 
partially ordered ground states, i.e. they contain a finite fraction of disordered spins. Such 
‘free’ spins give a dominant contribution to the entropy of the ground state and actually 
stabilize the partially-ordered structures. We hope that such models, although far from,being 
realistic, can shed some light on the interesting problem of entropic ordering. 

In section 2 we examine the frustrated spin4 antiferromagnetic king model on the 
decorated square lattice. In the presence of the one-ion anisotropy, which restricts the ‘free’ 
spins to the decorating sites, the ground-state problem after decimation is equivalent to the 
S = 1/2 antiferromagnetic king model and, thus, the existence of partial long-range order 
can he inferred from the well known exact solution 141. This example violates the conjecture 
made some years ago by Hoever et a1 [5] about the non-existence of spontaneous symmetry 
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breaking in systems where ground-state configurations can be locally transformed one into 
another. Transfer-matrix calculations show that without oneion anisotropy the system 
exhibits very similar behaviour. 

In section 3 we study the frustrated model on the union jack lattice. Under a similar 
restriction on the location of the ‘free’ spins the problem is equivalent to the staggered 
six-vertex model. The existence of partial long-range order at any S > 0 is, thus, a simple 
consequence of the fact that the vertex model has a non-zero staggered polarization. 

In section 4 we briefly describe the same model on the triangular lattice. This is the 
most interesting and, at the same time, the most difficult case. We map the ground-state 
problem into a certain SOS model. The Rat phase in the SOS model, which exists above the 
roughening point, corresponds to the partially-ordered ground state. However, the mapping 
leaves some ambiguity concerning the nature of the partial order and we suggest that in this 
model it might be a novel kind of ordering. More detailed accounts concerning this case 
can be found elsewhere [6,7]. Section 5 contains our conclusions. 

A Lipowski and T Horiguchi 

2. Decorated square lattice 

Let us consider the frustrated spin4 antiferromagnetic king model on the decorated square 
lattice. For the reasons specified below, we apply one-ion anisotropy on non-decorating 
sites. The Hamiltonian of this model is written as 

where si. t(i.j, = 4, -S + 1, . . . , S denote spin operators on the non-decorating and 
decorating sites, respectively. The one-ion anisotropy constant is assumed to be non-positive 
(D < 0). The symbol (i, j )  denotes the pair of nearest neighbours on the square lattice. 

The summation over bonds (i. j )  can be regarded as a summation over triplets 
(si, sj,  t(i.j$. Model (2.1) is fully frustrated since there is no configuration of a triplet 
(si. sj, t(i.j,) which would saturate all three of its bonds: sisj, s&j), sjt(i,j). 

Configurations (si. tci,j)) which minimize (2.1) for D < 0 are specified as follows (the 
case D = 0 will be considered separately). 

(i) Spins on non-decorated sites can take only extremal values: si = &S. This condition 
minimizes the second term of the Hamiltonian. 

(ii) If the neighbouring spins si, sj are of the same sign, then the decorated spin t(j,j, 
has to be extremal and of the opposite sign (of si, sj). When si, sj are of opposite signs, 
then the decorated spin is ‘free’ and can take any admissible value. 

One can easily perform the summation over decorating spins. Thus, the degeneracy of 
the ground state .Q(D < 0) can be written as 

where &{si)) is the number of antiferromagnetic pairs in the configuration {si]. 
Let us notice that there is no restriction on the spins si, except that they have to be 

extremal. Thus, the last term is equivalent (up to an unimportant constant) to the partition 
function of the square lattice S = 1/2 antiferromagnetic king model with the coupling 
.? = 4 ln(ZS+ 1). As is well known [4], this model is critical for .& = 4 In(.&+ 1). which 
corresponds to SC = &/2 - 0.7071 . . .. Thus, we obtain that only for S = 112 is the 
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ground state of the model disordered (f < &). For larger S the ground state is partially 
ordered, it consists of the ordered antiferromagnetic square backbone and ‘free’ decorating 
spins. The long-range order saturates in the limit S 4 M. Moreover, let us notice that the 
spin S enters model (2.2) as a weight factor which, thus, might be regarded as a continuous 
parameter (model (2.1) is meaningful only for integer and half-integer S). 

The emergence of the long-range order or, equivalently, spontaneous symmetry breaking 
in model (2.1) for S 2 1 violates the conjecture made some years ago by Hoever et nl [5 ] .  
On the basis of the results obtained for a certain class of frustrated models, they conjectured 
that if any two ground-state configurations can be transformed into one another through a 
sequence of local, energy-invariant transformations, then there is no spontaneous symmetry 
breaking in such a system. In other words, there should be no spontaneous condensation 
onto a particular configuration or set of configurations. It is easy to realize that any two 
ground-state configurations of model (2.1) can be transformed into one another through such 
local transformations by changing, simultaneously, at most five spins (one non-decorating 
and its four surrounding decorating spins); 

Is the condition D i 0 essential for the appearance of long-range order in the ground 
state of model (2.1)? In the following we will consider the case D = 0. Since non- 
decorating spins s; are no longer restricted to the extremal values the problem becomes 
more complicated. Ground-state configurations are specified as follows. For any triplet 
( s i , ~ j , r ( ~ . ~ ) )  at least one of its bonds has to be ‘minimal’, i.e. has to contribute energy 
-.IS2; condition (ii) is actually a special case of this condition. Of course, every ground- 
state configuration for D c 0 is a ground-state configuration for D = 0. 

Although the summation over f ( i , j )  can be performed in the same way as in (2.2). the 
lack of condition (i) makes the resulting model more complicated: 

n(D = 0) = C ( 2 S  + I)k“,T;’). (2.3) 
(SI 

The only restriction which is imposed on the configurations (si] is that at least one of the 
two neighbouring spins has to be extremal. 

Let us notice that in (2.3) the weight of the configuration (si) does not depend on the 
values of the non-extremal spins. Since the non-extremal spins cannot be nearest neighbours, 
we can easily perform summation over the non-extrema1 states. Thus, we arrive at the 
following three-state problem (zero represents a non-extrema1 state and +I correspond to 
the extremal &S states): 

where ui = 0, il and at least one of the two neighbouring spins has to be non-zero. The 
symbol Z([ui)) denotes the number of zero spins in the configuration (ut). 

Due to the above ‘hard-core’ condition, the spin-1 model with a partition function 
which is equivalent to (2.4) has to possess infinite interactions. Nevertheless, the properties 
of model (2.4) can easily be examined by numerical methods [SI. Let us place model 
(2.4) on the strip of width L and infinite length, and with a toroidal boundary condition. 
The partition function in such a geometry is given as the largest eigenvalue h~ of the 
corresponding transfer matrix. Moreover, the inverse of the correlation length can be u?itten 
as = In(hL/hi), where Ai is the second largest eigenvalue. From renormalization-group 
arguments [9] one expects that the critical point Sc is approximately given as a solution of 
the equation 

tL CL-1 

L L-1 
_ = -  
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and the difference in widths of strips is unity due to the expected best convergence in this 
case. Condition (2.5) implies that the critical exponent U which describes the divergence of 
the correlation length is given as 

and the derivatives are calculated at the critical point obtained from (2.5). Although model 
(2.4) is antiferromagnetic, there is no magnetic field and, thus, it can be mapped into the 
ferromagnetic system by means of a simple gauge transformation. This procedure enables 
us to avoid alternation of results caused by the parity of L. Thus the elements of the transfer 
matrix T are given as 

T(O1, d )  = (2s + l )k l+kk’”(2S - 1)I’Z (2.7) 

where k, , kz denote the numbers of, respectively, vertical and horizontal ferromagnetic 
bonds between rows a and 01’ (the matrix T transfers in the vertical direction). The letter 
1 denotes the total number of zero states in 01 and a‘. Moreover, using the rotational and 
magnetic (up-down) symmetry [lo] one can easily quasi-diagonalize the transfer matrix T. 
For L = 9 the largest block which has to be diagonalized numerically has the dimension 
474. 

Numerical results, i.e. the values of Sc and U, are shown in table 1 .  

Table 1. Values of Sc. Y. I )  and c calculated for several values of L. The extrapolations are 
based on the power-law convergence (2.10). 

L sc ” 
3 0.688408 0.93067 
4 0.710993 0.949 10 
5 0.724119 0.96684 
6 0.730 I27 0.97857 
7 0,732873 0.98536 
8 0.734238 0.98936 
9 0.734986 0:99188 

il c 

0.264 18 0.605 19 
0.257 78 0.56439 
025477 0.53754 
025328 0.523 18 
0.25245 0.51555 
0.251 95 0.51 I20 
0351 63 0.50849 

Extr, 0.73632 0.9988 0.2507 0.5015 

Assuming conformal invariance, one can derive [ I l l  the relation between the critical 
exponent q, which describes the asymptotic behaviour of the correlation functions (uiuj) - 
li - j l - q ,  and the correlation length 

Moreover, the finitesize corrections to the free energy fm can be used [12] to obtain the 
central charge c: 
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The central charge is determined from the two estimations of the free energy for L and 
L - 1. 

The values of q and c calculated at Sc = 0.736 32 are also shown in table 1. Extrapolated 
values in the bottom row of table 1 are obtained using the data for L = 7, 8 and 9 and 
assuming power-law convergence: 

X ( L )  = x ( ~ )  + A L - ~ .  (2.10) 

Our calculations strongly suggest that model (2.4) belongs to the Ising universality class 
with U = 1, q = 0.25 and c = 0.5. The small shift of S, when comparing with the D < 0 
case is easy to understand allowing the non-extremal states on the non-decorating sites 
increases the fluctuations and thus a larger S is needed to induce partial long-range order. 

3. Union jack lattice 

In this section we describe the ground-state properties of the fully frustrated spin-S Ising 
antiferromagnet on the union jack (centred square) lattice. As in the previous section, the 
ground-state problem considerably simplifies in the presence of one-ion anisotropy. The 
Hamiltonian of the model is similar to (2.1) and is written as 

where si and fk are spin operators on eight- and four-coordinated sites respectively (see 
figure 1). The summation extends over nearest neighbours. 

Figure 1. Elementary cell of the union jack lmice. Open and black circles denote eight- and 
four-coonlinated sites respectively. 

Since the summation over bonds (of equal strength) is equivalent to the summation over 

(i) Spins on eight-conrdi.1ated sites can take only extremal values: st = fS. 
(ii) On each elementary triangle, spins are swh that they form at least one ‘minimal‘ 

Decimating over four-coordinated sites, we find thar thr ;-generacy of the ground state 

elementary triangles, the ground-stat* z.&uratiufib iiie specified as follows. 

bond. 

can be written as a partition function of the eight-vertex - .-Jel: 

where the summation is over all vertex configurations [vert.]. The symbol ki((vert.]) denotes 
the number of vertices of the ith kind in agiven configuration {vert.]. The factor two comes 
from the fact that configurations of opposite spins have the same vertex representation. 
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The weights wi can easily be deduced from figure 2, which shows the standard 
assignment of vertex and spin configurations 1131. For the second vertex the decimated 
spin is ‘free’. For the third and fourth vertices there is no value of the decimated spin 
which would satisfy (ii); for other vertices there is only one value of the decimated spin 
which satisfies (ii). Thus, we obtain 

wz = 2s+ 1 w ,  = wg = wg =~w7 = W8 = 1 w3 = w4= 0. (3.3) 

f : +  + - i. - + : +  i. + - . -  .... :... + ...I... + A..: :..:- - L  : 
+ l +  - + + - - : -  - : -  - r, 1’; - J.: 
(1) (2) (3) (4) (5) (6) (7) (8) 

Figure 2. Assignment of vertex and spin configurations. Spin configurations with opposite spins 
map into the same vertex configuration. The decimated spins (not shown) are at the vertex. 

Using certain symmetry properties [13], this eight-vertex model can be mapped into a 
staggered six-state vertex model [14]. On sublattices A and B the weights of this model are 
given as 

(3.4) 

(3.5) 

w’ - w l  - A w ;  = w;= w; = w;= w;, = 1 w; =2S+ 1 7 -  8 - 0  

B:w; = wh = w; = wi= w; = 1 w‘ 7 -  - w’ * -0.  - ’ w: =2S+ 1 

Let us notice that unequal weights wi, w; reflect the presence of some kind of staggered 
quadrupolar field. This field induces a non-zero polarization and the system has no phase 
transition (similarly to the king model in the magnetic field). The non-zero polarization 
of the vertex model translates in the spin language as an excess of antiferromagnetic 
configurations over the ferromagnetic ones. It implies that for any S > 0 the ground 
state of (3.1) has a spontaneously broken symmetry and is partially ordered. 

It seems plausible that model (3.1) is ordered even at finite temperatures. Moreover, 
since the antiferromagnetic phase has a large entropy, we expect that this phase might appear 
at finite temperatures even in the case when the model is not fully frustrated (for example, 
when the interactions between sisj and sirk are slightly different) and the ground state has 
a different structure (e.g. ferromagnetic). 

For S = 112 model (3.1) can be solved exactly, even at finite temperatures and such 
behaviour is indeed found [15,16] (in this case the oneion anisotropy term is, of course, 
irrelevant). 

The solvability of model (3.1) for S = 112 comes from the fact that in this case the 
model satisfies the so-called ‘free-fermion’ condition [17]. It is easy to check that for 
S = 112 the vertex model (3.2) also satisfies this condition. Using known results [17], the 
residual entropy (per site) of model (3.1) can be written as 

s ( S = i ) - -  -81njd” d@In [ $+,/-]-0.376996 .... (3.6) 

Similar to the decorated square lattice, the ground-state problem becomes much more 
complicated when D = 0. However, we do not expect a qualitative difference with the case 
D < 0 at least for S > 112. 
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4. Mangular lattice 

In this section we briefly describe our results concerning the ground-state structure of the 
spin4 antiferromagnetic Ising model on the triangular lattice. Our study was motivated by 
Monte Carlo simulations [18] of this model which indicate that the exponent q decreases 
for higher values of S (as shown by Stephenson [19], for S = 1/2 we have rl= 1/2). These 
simulations suggest that above a certain value Se the exponent q is presumably zero and 
the ground state is partially ordered: two sublattices form a honeycomb antiferromagnetic 
backbone and the third sublattice remains disordered. 

The basic mechanism of this ordering is the same as that described in the previous 
sections: in an ordered structure the number of ‘free’ spins is the largest and, thus, such 
configurations prevail. In the case of the triangular lattice a given spin is ‘free’ when its six 
neighbours take the extremal values f S  alternately. We do not discuss the case when the 
external anisotropy fixes positions of ‘non-extremal‘ spins; it seems to us that in this case 
it would not lead to a simpler problem. 

The results of the previous sections suggest that by decimating over ‘free’ spins we 
can relate this ground-state problem with some other, hopefully simpler, model. Since 
spins taking non-extremal values cannot be nearest neighbours, there is (2s - I)’(~s~]) 
configurations which have the same ‘extremal’ backbone and differ only in values of non- 
extremal spins, k ( ( s ; ) )  is the number of non-extremal spins in the ground-state configuration 
[si}. Thus, we obtain 

(4.1) 

where ui = 0 corresponds to a non-extrema1 state and ui = fl correspond to si = fS 
respectively. The summation is performed over all configurations {ui) which satisfy the 
(ground-state) condition that each elementary triangie contributes the energy - J ,  where J 
is a coupling constant. 

The emergence of partial ordering is equivalent to the phase transition in the three 
state model (4.1). However, this model is very complicated and it is difficult to predict its 
behaviour, but we can express the degeneracy of the ground state Q in another way. 

First let us notice that we are led in a natural way to the representation (4.1) by the 
following mapping: every extremal state si = kS is mapped into uj = f l ,  respectively, and 
every non-extrema1 state is mapped into ui = 0. The weight (2s- I)’([’~’) gives the number 
of the configurations [si] which are mapped into the same configuration {ui). Now, let us 
modify the second rule of this transformation and map non-extremal states into ui = fl 
depending on the type of the surrounding of the non-extremal state and let us notice that 
for a non-extremal spin there are only two types of surroundings (they are related by the 
up-down symmetry). In this mapping the weight is given as (2S)”((’”), where k’([uj)) is 
the number of ‘favoured‘ spins in a given configuration [ u j )  (for a more detailed formulation 
see our other papers [6,7]). Thus, we can write 

(4.2) 

In (4.2) the summation is performed over all ground-state configurations of the S = 1/2 
model. For S > 1/2 they are, however, unequally weighted. Although multi-spin 
correlations of spin operators are needed to determine k’({ui)), such a transformation has 
the important merit that as a result we obtain a two-state model (ut = ?cl). 
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Following Blote and Hilhorst [ZO], we can map configurations {ui) into a certain SOS 
model. Although model (4.2) is unsolvable, the relation with the SOS model enables us to 
predict the behaviour of model (4.2). First, let us notice that by increasing S we favour flat 
configurations (actually, the cormgated ones). .Thus, we decrease the fluctuations of the SOS 
model and, consequently, the parameter S can be related with the inverse of the temperature 
of the renormalized Gaussian model (we make the commonly accepted assumption that the 
SOS model in the rough phase renormalizes into the Gaussian model). Moreover, in our 
mapping the correlations functions (uiuj) are Fourier "forms of the height variables of 
the SOS model. Since the spin-wave operators of the Gaussian model can be related [21] 
to the spin model (4.2), the precise dependence of the renormalized Gaussian temperature 
on the spin S can be eliminated and a number of results concerning the stability of model 
(4.2) can be obtained [6,21]. In particular, we find that at the roughening transition we 
have q = 1/9. The partial ordering on the triangular lattice thus translates as a flat phase 
of this SOS model. 

The Monte Carlo simulations 1181 and our transfer-matrix calculations show that 
q = 1/9 for S - 3, and stability analysis suggests that the critical value of spin has to be 
close to this value. However, for S = 7/2 Monte Carlo simulations give q = 0.06910.003, 
which according to the stability analysis is impossible. In the Monte Carlo simulations the 
measured quantities were spin4 correlation functions (SiSj). One possible explanation of 
such a discrepancy might be the inaccuracy of the Monte Carlo method or a failure of 
the assumption about the renormalization into the Gaussian model; but we can propose yet 
another explanation. Namely, the relation between order parameters in the original spin4 
antiferromagnet and model (4.2) suggests [6] that it is possible that for S > 3 the ground 
state of the spin-S antiferromagnet is critical with 1/9 > 17 > 0, and at the same time the 
SOS model (4.2) is in the long-range-ordered phase. This kind of order would be in some 
sense similar to the chiral order where the single spin averages are zero and we have a 
multi-spin order parameter. Although our arguments are rather speculative, the possibility 
of the existence of such a novel kind of ordering seems to be very interesting and certainly 
worth further studies. 

5. Conclusions 

The ground-state configurations of all frustrated spin4 Ising antiferromagnets studied in 
this paper have to satisfy only one rule: each elementary triangle has to have at least one 
pair of extremal but opposite spins. This simple rule leads to the strong degeneracy of the 
ground state, and for a sufficiently large S partially ordered structures appear. 

However, more detailed properties of the ground state strongly depend on the geometry 
(i.e. lattice structure) in which this rule has to be satisfied. In some cases the ground-state 
problems of models studied~in this paper are equivalent to some other models with behaviour 
that is known exactly or can be predicted: the S-dependent finite temperature square lattice 
Ising model, the staggered six-vertex model or the SOS model. 

Of course, the frustrated models examined in this paper cannot be regarded as being 
realistic models of entropic ordering. We can only suggest a certain link using some 
speculative arguments. Let us represent occupied and empty sites by si = fS respectively. 
It is possible to imagine that in certain systems, due to, for example, geometrical constraints, 
certain configurations of particles (e.g. when occupied and empty regions are alternately 
placed) might create regions where particles obtain some extra freedom and other (non- 
extremal) states are needed to describe such favourable configurations. At the crude level 
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such systems might be described by models similar to the ones considered in this paper. 
Let us notice that in physical continuous systems the accessible space is usually isotropic. 
Keeping in mind the strong dependence on the geometry, we have t o  look for the lattice 
model which also should be, in some sense, isotropic. Among the examined models, only 
in the model on the triangular lattice are all sites equivalent and, thus, in the context of 
entropic ordering, this model seems to be the ‘least unrealistic’. However, at the same time 
this is the most difficult case and even the very nature of the partial order might turn out 
to be surprising. 
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